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ABSTRACT
Wildlife poaching is a critical driver of biodiversity loss and popu-
lation decline. Poaching is a particular threat to high value, large
bodied species, such as elephants, that are slow to reproduce. In-
creasingly, GPS tracking collars serve as a key tool for studying the
behavior and monitoring wildlife globally, including application to
anti-poaching efforts. However, collars provide indirect informa-
tion on poaching, such as immobility, that is often not available
in real time. In parallel to collar development, acoustic gunshot
detection systems have proliferated in the military and law en-
forcement. Static systems in wildlife areas have been deployed
for detecting poaching, but such systems do not scale geographi-
cally. This paper explores the idea of fusing GPS tracking collars
with acoustic shockwave detectors to create an animal-borne anti-
poaching sensor. A real-time alert of gunshots near elephant groups
would enable rangers to respond immediately to such events. The
two main technical challenges to such a system are battery life and
detection accuracy. The paper presents a prototype designed for
elephants that has great promise in addressing these significant
technical challenges.
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1 INTRODUCTION
Poaching is one of the primary drivers of wildlife decline, notori-
ously being listed among the top five drivers of biodiversity loss [2].
While it targets a vast array of animals, the highest valued are
increasingly large-bodied, charismatic species that are particularly
susceptible to overharvest due to their slow rate of population
growth. The impact extends beyond the demise of the targeted
species. Poaching caused wildlife declines can have serious impli-
cations for ecosystems, where the removal of animals from illegal
harvest can have cascading effects on other species and even pro-
ductivity of the system as a whole [3]. Poaching also can have
serious social repercussions on the people living near hotspots.
Recent work suggests the illegal harvest of charismatic species can
have significant economic costs by compromising the potential for
tourism-based revenue generation [11].

Poaching is, by definition, illegal. As such, interventions to re-
duce it typically follow classic law enforcement approaches. How-
ever, wildlife poaching tends to occur in remote areas, with low
human densities, where detection is difficult. In addition, poach-
ing of large, high-value species is militarized and can be driven
by global crime syndicates. As such, local wildlife agents can be
operationally overwhelmed, not only in terms of law enforcement
equipment, but often due to the limited capacity to monitor widely
and diffusely distributed animals. The development of technologies
designed to overcome the challenges of remote wildlife protection
that can enhance protective efficacy is needed.

Animal-borne sensors, particularly GPS-equipped collars, are
used to enhance real-time wildlife protection [25]. Tracking tech-
nology offers near real-time access to the location of animals and
sensor data collected on the collar. In addition, GPS tracking has
become a key approach in wildlife conservation efforts focused on
resolving broad landscape management issues [29]. As a result, the
application of radio collars on species is becoming one of the most
common tools for wildlife monitoring in ecology and conserva-
tion and used on a variety of species across numerous systems [7].
Innovations that can be integrated into tracking systems can imme-
diately scale, offering broad application. GPS tracking is currently
integrated with many anti-poaching systems, but primarily as a
means to deploy assets in the vicinity of at risk individuals, though
interest in using movement data to identify exposure to risk is
increasing [26]. While these data streams have been valuable to re-
solve a number of conservation challenges, these systems have not
been particularly effective in identifying poaching in real-time [15].
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Detecting poaching events, be they successful or attempted, is a
critical need to provide actionable information for law enforcement.

The paper presents a novel approach to anti-poaching: a ballistic
shockwave detector integrated into an existing GPS collar to pro-
vide real-time alert of shots fired near the protected animal. Note
that the objective is not to prevent the current poaching, but to
notify the authorities so that they can apprehend the perpetrators
and prevent future attempts. The work focuses on the two main
technical challenges: power consumption and gunshot classifica-
tion accuracy. The device needs to last two years on a single charge
while continuously listening for shots. Note that no current energy
harvesting technology is applicable due to the rough conditions.
Law enforcement response in remote areas are extremely resource
intensive, so false detections must be kept at an absolute minimum.

The rest of the paper is organized as follows. First, we present
relevant related work followed by a summary of the approach we
have taken. Next we briefly describe the existing commercial GPS
collar we have expanded with shot detection capability followed
by a description of the mechanical modifications necessary to ac-
commodate a hole for the microphone. Section 6 presents the key
idea of the work, the wake-up mechanism. Section 7 introduces the
overall system architecture followed by the details of the gunshot
detection and classification algorithms. Finally, the evaluation of
the results are presented.

2 RELATEDWORK
The use of sensors to identify security risks to animals represents
a key opportunity that can advance wildlife protection, particu-
larly in remote areas where standard anti-poaching techniques are
challenged. Currently, the use of on-animal tracking systems for
identifying mortality events has largely relied on beacon based
signals which identify immobility after an extended period (usually
24 hours) [22] or clustering algorithms of locations to identify un-
natural immobility. Once these indicators have been signaled and
detected, the location can be investigated to assess if a poaching
event happened. However, animals may sleep for hours and the
transmission of GPS data can be delayed depending on the schedule
of the collar. The delay offered by clustering or beacon based iden-
tification of immobility often means the detection of the security
event is outside of an effective operational window. This limits their
utility for direct intervention.

Increasing interest in sensors designed to detect immediate
events is driving the development of multiple add-ons to track-
ing systems [22, 28]. These sensor-based approaches offer unique
insight into behaviors of interest but tend to have limitations that in-
hibit their utility for anti-poaching solutions. Biophysical monitors
are promising, but often require invasive approaches (e.g., surgi-
cal implants) and have limited lifespans. More commonly, activity
sensors, such as accelerometers, are being employed to provide
fine-scale information on the status and activity of a tagged in-
dividual [13, 19, 28]. However, the use of accelerometer data as a
means to detect mortality has proven difficult, given that behavioral
identification using accelerometers is prone to false positives.

In addition to animal-borne sensors, there are several develop-
ments in software platforms to enable the real-time visualization,

analysis, and dissemination of sensor-based data. For instance, real-
time interaction with GPS tracking data has been greatly facilitated
by the development of tracking apps, that can relay near real-time
information to field personnel. Several tracking projects are cur-
rently using such visualization platforms as the foundation for their
security operations, offering sound operational capacity for the
integration of new sensor packages [25].

2.1 Gunshot Detection
There are two acoustic events associated with firing a typical rifle.
The muzzle blast originates at the gun itself and spreads spheri-
cally at the speed of sound. It is the result of the propellant of the
ammunition exploding inside the barrel of the gun. The second
event is called the ballistics shockwave and it is caused by the bullet
travelling faster than the speed of sound. This sonic boom creates
a conical waveform whose tip is the bullet and that expands at
the speed of sound. Both of these events can be picked up by a
microphone.

A muzzle blast is a high energy event characterized by a rapid
rise. However, the signal shape depends on the rifle and ammunition
used and is greatly affected by the environment due to echoes. Also,
the source of the muzzle blast is the gun which can be quite far from
the animal. Finally, the sound energy and, hence, the detection range
of the muzzle blast can be significantly lowered by a suppressor.
For all these reasons, the muzzle blast is not an ideal signal for an
anti-poaching sensor.

In contrast, the ballistic shockwave is a unique acoustic phe-
nomenon (Fig. 1). Its shape in the time domain resembles a capital
N with sub-microsecond rise time and a length of a few hundred
microseconds depending on the caliber, speed, and miss distance,
that is, the distance between the sensor and the trajectory of the
supersonic projectile [27]. It is also a high-energy event, especially
at a short miss distance. As such, it requires microphones with low
sensitivity, but with a superb high frequency response. The further
the microphone is from the trajectory, the more the N-shape of the
signal gets distorted by the air acting as a low pass filter. As such,
the effective and reliable detection range of the shockwave is about
50 meters. However, the miss distance will be small for poachers
that are shooting at an animal and, therefore, the sensor. Given
that the source of the acoustic event, the projectile, will be closer to
the sensor than the gun, the samples recording the shockwave will
precede those of the muzzle blast when arriving at the microphone.

Figure 1: Shockwave of an M16 projectile
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Finally, only subsonic rifles can produce projectiles that do not
generate a shockwave, but their effective range is much shorter
than those of regular rifles making them less commonly used for
poaching. Two widely used poaching rifles are the AK-47 and the
M16 (or its civilian variant, the AR15) due to their proliferation
around the world. Both are supersonic, as are almost all big game
hunting rifles. All of these characteristics make the shockwave the
ideal target signal for an animal-borne gunshot detector.

2.2 Acoustic anti-poaching systems
There has been at least one attempt to employ a commercial gunshot
detection system for anti-poaching. ShotSpotter [17] has been in use
in various U.S. cities to alert police to the location of gunshots. In
2014 a small system of a few sensors was tested in Kruger National
Park to detect and localize muzzle blasts related to rhino poaching.
The sensors were deployed at fixed locations covering a few square
miles. While there is no published evaluation of the experiment in
the scientific literature, it is notable that this system is not currently
employed. It is probable that unreliable acoustic classification due
to attenuation and distortion limit the utility of this system in large
wilderness areas. To the best of our knowledge, there was no follow
up after this short-term experiment.

There are acoustic wildlife monitoring systems in use across the
world, which are often deployed for extended periods. Some of these
are able to detect gunshots [9, 30]. Given the few hundred-meter
effective detection range for muzzle blasts, and the fact that one
needs three sensors to locate a point source, these systems can only
protect very small geographic areas. Covering Kruger or Serengeti
would require millions of sensors, which is not practical.

3 APPROACH
Current acoustic shot detectors aimed at identifying poaching
events are inadequate, given they are statically deployed and rely
on muzzle blasts resulting in a limited detection area. Hence, these
systems do not scale geographically. An animal-borne shot detector,
on the other hand, protects the animal and its herd, not an area.
Furthermore, given the animal is the target, the ballistic shockwave
can serve as the primary event making classification more accurate.

The aim of this work is to integrate an acoustic shockwave de-
tector into existing GPS tracking collars. Current tracking systems
tend to record the GPS positions hourly and upload those positions
several times a day. However, the presented system can be event
driven, such that when a gunshot is detected, it immediately sends
an alert with the last recorded GPS location, then records and sends
a new position. This ensures event identification should poachers
destroy the unit before the recording and sending of a new GPS
position. Note, that the first shot will always be aimed at the animal
and not the sensor, meaning that the system cannot necessarily
save the animal wearing it. Instead, the goal is for law enforcement
to be able to apprehend the perpetrators and hence, prevent further
poaching. It can also act as a deterrent if the poachers realize the
increased risk of getting caught.

Our initial target species is elephants because they are subject
to high levels of poaching across Africa and Asia, they are being
tracked in numerous locations and their large size provides the
fewest mechanical constraints in terms of size, hence, batteries.

However, sensors are difficult to deploy on elephants and they are
rough on the collars. Consequently, the units need to last multi-
ple years on a single charge and the enclosure needs to be very
robust. In addition, false positives are a serious concern given the
remote locations where elephants roam make responding to an
alert resource-intensive. Hence, the false alarm rate of gunshot
classification must be kept to a minimum.

Existing wearable gunshot detectors for the military only last
a day or less on a single charge [12, 23]. This is because they con-
tinuously sample and process the recorded acoustic signal. They
typically use multiple microphones and high sampling rate for
Angle of Arrival estimation. But even a single microphone and
lower sampling rates would result in an order of magnitude lower
power consumption at best. A larger battery can gain another 10×
improvement. The single greatest technical challenge for the anti-
poaching sensor is the requirement for another order of magnitude
improvement in battery life. Due to the harsh conditions and limited
size, solar or mechanical energy harvesting can not address such
energy requirements. Our solution employs an ultra-low-power
microphone attached to the wall of the protecting box that wakes
up the rest of the system using a threshold trigger. The acoustic
signal is guided through a hole and a thin tube—a kind of acoustic
delay line—to an electret microphone delaying it just enough so
that the entire event can be captured without information loss.

The second significant challenge is the need to virtually eliminate
false positive detections. Having two microphones with different
characteristics is useful. But we also add an accelerometer so that
possible gunshots can be correlated with changes in the motion of
the animal. Fall, immobility, or a panic run after a shot candidate
will increase the confidence in detection accuracy. To validate the
design of the sensor and finalize the detection algorithm, the first
prototype units have SD cards on-board that store 3-axis accelerom-
eter data continuously as well as all detected acoustic events. Due
to the added power consumption of data storage and in order to
progress with the development at a reasonable rate, the initial de-
ployments are expected to last only a few months. Based on the
data gathered, the hardware and software of the system will be
revised and finalized.

4 TRACKING COLLARS
A popular sensor model—made by Savannah Tracking [16]— has
been selected as the initial platform for integration with the gunshot
detector. It is already widely used on elephants and, with different
collar designs, on other species in many areas of Africa and Asia.
The collar itself is made from a 135mm wide 10mm thick cotton
fibre and rubber transmission belting. The electronic board and
battery are housed inside a half-moon shaped nylon casing placed
on the top of the collar in a stainless-steel metal housing. Note that
once ready for deployment, the sensor enclosure is filled with resin
to protect the electronics from the elements. To keep this unit on
top of the neck, a steel counterweight is placed under the neck
which further acts as the place for connecting the belting during
deployment (Fig. 2). The total collar weight is 14 kg.

Position acquisition is done using GPS localization. The intervals
between the position recordings and the lengths of averaging peri-
ods can be defined by the user to balance between the accuracy and
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Figure 2: Deployed tracking collar

power consumption. Positional data is transmitted at user-defined
intervals, typically every 3-6 hours, to a cloud-based server via the
Iridium satellite SBD service [6]. Optionally, a GSM modem can
replace the satellite-based communication for deployments where
cell coverage is reasonable. Up to 24 positions can be sent in a
single message, hence up to hourly positions can be included in a
single daily report. The communication is half-duplex, allowing the
reconfiguration of parameters of the data collection schedule after
collar deployment. Data access, collar reconfiguration, database
management, visualization, and animated replaying of the data are
all provided via a cloud-based server.

The collar contains 4 lithium D-cell batteries providing a total of
230Wh of power. With a typical schedule of 24 GPS positions and
4 data reports per day, this will provide around 10 years of lifetime,
well above the expected average physical lifespan of 2-5 years.

The collar also contains a tri-axis accelerometer collecting data
at user-defined settings of 1−100Hz and between 2−8 g sensitivity.
This data is not transmitted but evaluated on board in real-time.
Activity patterns suggesting unusual behaviour (multiple excessive
motions spikes) or mortality (immobility) will trigger an alarm
response, which contains a GPS location and the specific type of
alarm triggered. Once received by the server, this alarm is forwarded
via e-mail and/or text message to a collar-specific list of contacts.
Hence, shortly after an animal has started behaving in an unusual
way, users will be alerted automatically with a message containing
the animal’s current position and the type of alarm triggered. While
the accelerometer data alone is prone to false positives, combining
gunshot detection with motion sensing may result in a real-time
and more robust poaching detection system.

5 MECHANICAL PROTECTION
Given the strength of elephants, the mechanical protection of an
acoustic sensor is challenging. The protective material needs to be
strong and thick to survive the required lifetime of the sensor. The

Inside

Outside

1 2

4 3

Figure 3: Structure of the acoustically permeable waterproof
mechanical protection. (1) metal wall, (2) small hole, (3) wa-
terproof acoustic vent and (4) metal mesh. The vent and the
metal mesh are held in place by a metal plate bolted to the
wall with a hole in the middle (not shown).

steel box, thick nylon and the resin filling offer reliable protection
but also reduce the acoustic energy and the signal-to-noise ratio
inside. Another undesirable effect of the rigid metal wall is the
greater attenuation at higher frequencies in such dense medium [8].
The unique aspect of a shockwave is its extremely rapid rise time,
which is heavily distorted by the enclosure.

To reduce these unwanted effects, a small hole is drilled into the
metal wall to enable unattenuated sound propagation into the box.
With this solution, the sound quality is preserved, but the water-
proofness is lost. Fortunately, the same problem arises in today’s
handheld devices and acoustic waterproof vents with favorable
sound transmission properties are readily available. These highly
breathable expanded polytetrafluoroethylene membranes vibrate
easily, rapidly equalize pressure, and offer protection up to IP68 [5].
The sound transmission loss is below 2dB, which is negligible. These
vents are used to cover the hole, but they have a sensitive mechani-
cal structure that needs additional protection when applied at the
external surface of the box. Therefore a metal mesh with strong
mechanical properties and without sound-distortion effects is used
to protect the hole and the acoustically transparent venting. The
final structure of the mechanical protection is shown in Fig. 3.

6 WAKE-UP MECHANISM
Gunshot detection is a pattern recognition problem that requires the
constant recording and processing of environmental sounds. With
wearable devices, there are trade-offs between power consumption,
sensitivity and information loss. In this section, our novel wake-up
mechanism is presented and compared to the state-of-the-art.

6.1 Traditional solutions
In many applications, almost constant listening can be achieved by
using analog threshold-based wake-up circuitry to trigger recording
a very short time after the acoustic event has started. Usually, the
initial loss of information is negligible compared to the full length
of the pattern of interest. With specialized microphones and ar-
chitectures, the initial wake-up delay can be as low as 100 µs [24],
while keeping power consumption very low.

In Section 2, we explained the basics of gunshot acoustics and
showed that if the listener hears the shockwave, then it must be
the initial impulse-like section that reaches the microphone first.
Preserving the quality, and ensuring the recording of this part of
the shockwave is crucial to maximize classification accuracy. By
using the previously mentioned wake-up mechanism, up to 1/3 of
the N-wave pattern would be lost due the 100 µs initial delay. The
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classical analog wake-up mechanism, therefore, cannot be used in
shockwave-based gunshot detection systems.

To solve the information-loss problem, we have to take into
consideration another classical solution, the always-on listening
method. The main idea is to turn the microphone on and constantly
keep pushing digitized samples into a circular buffer to maintain a
short signal history in the memory. When a gunshot event happens,
samples collected before the shockwave arrival are already stored
in the memory enabling the recording of the full N-wave. However,
this solution requires active clock sources for the microcontroller
and for its peripherals. By optimizing a system for this solution,
low power consumption can be achieved, but it is still significantly
higher than the previously described analog mechanism.

6.2 Delay line wake-up mechanism
The combination of the ultra-low power consumption and the
preservation of a full shockwave is essential in wearable gunshot
sensing. To satisfy both requirements, a two-domain-based wake-
up mechanism was introduced. The proposed structure is based
on a kind of acoustic delay line enabling a two-phase wake-up
procedure, illustrated in Fig. 4. This solution uses two types of mi-
crophones: a contact and a traditional electret microphone. The
contact microphone, or pickup, is a transducer that converts the
vibration of the surface it is mounted on to voltage by utilizing the
piezoelectric effect. In our case, this microphone is attached to the
internal side of the metal sensor enclosure. The second, traditional,
microphone is placed at the end of a 3.5 cm-long tube. This tube
serves as a waveguide and soundproofing for the incoming sound
waves that enter the box through the protected hole.

The main idea behind this structure is to wake up the data acqui-
sition system from deep sleep mode when the acoustic waves reach
the metal wall and delay the sound waves by the tube to ensure
the required amount of time for the system to prepare for data
collection. This is possible since the speed of sound is negligible
compared to the speed of light and the voltage generated by the
contact microphone travels at the latter.

6.2.1 Timing of the wake-up procedure. The time required by the
sound to travel through the tube can be calculated from the length
of the tube (l) and from the speed of sound in air (c). Latter varies
by the temperature, and in Africa, extreme hot weather is possible.
Using reasonable limits, the propagation time, Tprop becomes:

Tprop =
l

c
=

0.035m
345 ± 20m/s

= 101 ± 7 µs .

In Fig. 4, the timing of the wake-up mechanism is presented.
The shockwave arrives from the left side and propagates through
the tube to reach the microphone at the end. At time point tH , the
shockwave hits the metal wall and pressure waves convert to vi-
bration, thus voltage is being generated by the contact microphone.
When the voltage level crosses the previously set threshold level, at
tW , an analog comparator wakes up the microcontroller and turns
the microphone’s power supply on. Our MCU needs 10 µs to wake
up from deep sleep mode, so at tC the CPU is active and enables
the analog-to-digital converter (ADC). Approximately 60 µs has
passed and at tA the ADC has already collected the first digitized
sample from the stabilized microphone signal. Around 40 µs later,

Sh
oc
kw

av
e

Contact microphone

MicrophoneMetal wall Delay line

Figure 4: Details of the wake-up mechanism. In the top
row the structure of the delay line and the propagation
of a shockwave from left to right are shown. Below that,
the microphones’ signals synchronized to the shockwave’s
progress are plotted. Different time points of the event are
marked: tH - the shockwave hits the wall; tW - wake-up sig-
nals are generated by the contact microphone; tC - CPU and
microphone switch to activemode; tA - the first ADC sample
is collected; tS - the shockwave reaches the microphone.

at tS = tH +Tprop , the shockwave reaches the electret microphone
and the leading edge is captured.

6.2.2 Advantages of the proposed mechanism. In the delay line-
based structure, the power consumption before the wake-up event
is very low, since only the contact microphone is active, which
doesn’t consume any energy. Instead, it generates voltage. Addi-
tional elements like an amplifier and comparators are needed, but
ultra-low power parts are available. The gunshot detection system
can spend most of the time in deep sleep mode and even the electret
microphone is turned off during the listening periods. This property
offers a very long lifetime to the detection system.

In addition, the delay line also enables data acquisition without
information loss. This has a big positive impact on the detection
accuracy as it will be presented in Section 9. When the system starts
sampling, it perceives a short section of the signal’s history, which
happened in the past, before the wake-up event.
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Figure 5: Gunshot recorded with the acoustic delay line
wake-up mechanism. The shockwave woke up the system
at time point tW , and reached the microphone at tS . The
shaded delay region between the two events is provided by
the acoustic delay line.

A gunshot event recorded with the delay line structure is pre-
sented in Fig. 5. The shaded region marks the delay between the
wake-up event tW and the arrival of the shockwave at the micro-
phone tS . This delay period between the two events is minimal
when the position of the shockwave impact point coincides with
the location of the drilled hole in the wall, that is, when the pro-
jectile trajectory is on the same side of the box as the hole. If the
shockwave hits the box from other directions, the delay becomes
longer, since the speed of sound in steel is over 10× higher than in
air, causing the vibration to reach the contact microphone almost
immediately, while the sound propagating in the air needs more
time to get to the hole around the enclosure.

Note that using only the low-power contact microphone alone
is not an option since it would still miss the beginning of the shock-
wave. Moreover, the vibration of the metal wall that it measures
does not preserve the characteristics of the shockwave as can be
seen in Fig. 5. Mechanical impacts on the sensor enclosure generate
similar signals. Also, the two signals with different characteristics
are of great help in gunshot classification. See Section 8.

6.2.3 Comparison with active listening. The fast processing of the
recorded signals requires significant amount of energy in any solu-
tions. However, it is completed in only a few hundreds of millisec-
ond in the case of short, impulsive gunshot events. Therefore, even
at high event frequencies like 1 event/minute, the total consumption
is dominated by the low-power listening mode.

During the listening period, the delay line wake-up structure
only runs an amplifier and two analog comparators as the main
actively energy consuming parts. In contrast, the active listening
method constantly requires enabled clock sources, active MCU and
analog-to-digital converter, turned on microphone and amplifier.
Both approaches were implemented with the same ultra-low-power
hardware components, and the corresponding power consumption

0 100 200 300 400 500 600 700 800 900

A

Delay line

Active listening

CPU

Peripherals

Amplifiers

Extra hardware

Figure 6: Power consumption comparison of the active lis-
tening and delay line wake-up methods.

values were measured in the listening phase. The delay line struc-
ture needed 102 µA, and the active listeningmethod required 832 µA.
The detailed comparison of the two mechanisms’ consumption is
illustrated in Fig. 6.

The significantly lower power consumption of our approach
offers 8× longer lifetime, or the same lifespan with batteries having
significantly smaller size. A lighter and more compact sensor makes
the approach feasible for smaller animals too.

The downside is some distortion of the acoustic signal caused
by the tube. This effect was analyzed in the frequency domain by
using chirp excitation signals. In these harmonic cases, we experi-
enced some distortions at multiple frequencies due to resonance
and standing waves in the tube. However, with real-world gunshot
tests and using an external reference microphone as a baseline, we
didn’t experience noticeable impact on the shockwave signal shape.

The idea of using an acoustic delay line does not necessarily im-
ply the utilization of a contact microphone. In our case, it ensures
even lower power consumption and enhanced detection accuracy
(explained in Section 8), but other applications may use different
structures. For example, using an ultra-low-power traditional mi-
crophone as the wake-up source instead of the contact microphone
is also possible. Furthermore, longer delay lines allow access to
a longer history of the signal prior to the wake-up event, so less
impulse-like patterns can be recorded too.

7 SYSTEM ARCHITECTURE
In this section, the hardware architecture and the most important
software components are presented. A small, low-power sensor
board was designed to capture, process and optionally store the
acoustic signals. The developed software controls the timing of the
wake-up mechanism and performs gunshot classification.

The low-power gunshot detector subsystem presented here is
integrated with an existing tracking collar. The connection between
the two systems is a simple two-wire protocol that can transmit
alerts along with a few parameters such as confidence level. The rea-
son for the simplest possible interface is to minimize any hardware
or software modifications of the existing collar system. Once a col-
lar is deployed, it is very difficult and resource-intensive to retrieve.
Furthermore, tranquilizing an animal is a traumatic experience, so
it must be avoided unless absolutely necessary. Neither is over the
air firmware upgrade possible due to the low bandwidth commu-
nication channel. Once deployed, the collar must work. Therefore,
any modifications carry significant risks. The currently utilized
collar already has an interface for plug-and-play extension with
additional sensors providing alerts. Therefore, it did not require
any modifications to add the gunshot detector.
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7.1 Hardware components
To implement the low-power delay line-based acoustic monitoring
approach, a sensor board has been developed. Fig. 7.a summarizes
the main components of the system. As it was explained earlier, the
wake-up mechanism utilizes two microphones. Each microphone
uses an amplifier for signal conditioning (biasing and amplification).
The contact microphone’s signal is connected to theMCU and to the
power management subsystem, shown separately in Fig. 7.b. When
the contact microphone signal leaves the interval defined by the
window comparator, a logic level wake-up signal is generated. This
signal is connected to the MCU, to wake it up through an interrupt,
and to an SR-latch that stores the state of the power manager. The
SR-latch controls a high-side switch, which, in active state, turns
the electret microphone on. With this solution, the wake-up process
is faster, because the MCU and the microphone are turned on at the
same time. When the acoustic event recording phase is over, the
MCU can reset the power manager’s state (inactive microphone).
Based on the detector output, the signal buffer can be saved on an
SD card in the form of an audio file. The sensor board contains an
accelerometer, which can be used to the monitoring the animal’s
movements after a potential gunshot detection. A panic-run, fall or
total absence of motion can reinforce the previously sent alert.

An interesting problem occurred with the fast wake-up of the
microphone. Traditional analog microphone signal conditioning
circuits utilize capacitors for DC component removal before the
biasing and amplification step. This capacitor needs to be charged
before normal functionality is provided. The charging time of the
capacitor limits the stabilization time of the microphone signal as
the charging current is limited by the impedance of the feedback
resistors in the amplification phase. To overcome this limitation, an
active boosting circuit was used that opens a low impedance route
to the capacitor in the first 40 µs of the wake-up procedure. During
this period the capacitor is being charged quickly.

The size of the existing box is limited and our sensor board needs
to be attached to the wall. Therefore, a compact microphone and
sensor board holder unit was designed, which can be 3D printed
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Figure 7: Hardware components of the developed board: a)
abstract hardware structure, and b) details of the powerman-
agement subsystem.

a) b)

Figure 8: Illustration of the gunshot detector subsystem as-
sembly (a). The sensor board is attached to the side of the
metal wall with the help of a holder element. The curved
tube inside the holder guides the sound to the microphone
delaying it just enough to wake up the sensor board. The in-
ner structure of this element can be seen in (b).

from semi-soft rubbery material instead of hard plastic. This mate-
rial helps reduce the effect of the vibrations on the electret micro-
phone. The cylinder-shaped holder has three functions. The most
important one is the embedded acoustic waveguide. A 3.5 cm long,
3mm wide tube, without any sharp turns or edges is meandering
inside the holder, connecting the hole in the metal wall with the
microphone. The curved tube design reduces the size of the holder
to about half of the 3.5 cm tube length. The microphone is soldered
directly onto the sensor board, which is fastened to the holder in
such a way that the microphone penetrates the entrance of the
tube. The other side of the cylinder presses the contact microphone
to the metal wall. The entire structure is attached to the box with
machine screws that are sealed for waterproofing. See Fig. 8.

7.2 Software components
The two most important tasks of the sensor are rapid wake-up
and reliable gunshot detection. Once deployed, the system cannot
be restarted or updated and must provide continuous listening for
multiple years. Reliability, real-time response and power-awareness
are common criteria in embedded systems, so well-known methods
exist to support the development process.

The sensor board contains an STM32 Cortex M4-based microcon-
troller [21]. The peripherals were configured and the initialization
code was generated by the STM32CubeMX software [20]. Only
hardware abstraction layer (STM32Cube HAL) functions were used,
which offer enhanced code reliability with acceptable run time
overhead.

The developed firmware is an event-driven application that con-
trols the wake-up logic, records the two microphones’ signals at
66KSPS sampling rate, runs the processing algorithm and sends
alerts if needed. Some extra functionalities were added to the initial
prototype: recording the acoustic events and continuous streaming
of 12.5Hz accelerometer data, both to the SD card.

8 GUNSHOT DETECTION
When an acoustic event happens, the system starts recording it
within 100 µs and a fast, nearly real-time decision is needed, because
the risk of sensor damage is very high as poachersmay try to destroy
the device. Therefore, processing time must be limited mandating
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the use of simple algorithms. The resource-constrained embedded
platform also points in the same direction.

In Section 2, it was mentioned that a common rifle used by poach-
ers is the AK-47, which has a 600 rounds/minute nominal rate of
fire. It means that in every 100ms a gunshot event can happen. The
supersonic speed of the projectile causes a separation between the
arrival of the shockwave and the muzzle blast at the sensor. This
period can easily exceed 100ms from reasonable ranges. This may
cause an overlap of the shockwave of the second and subsequent
shots and muzzle blasts at the listener’s position. However, the first
shockwave is almost always the first to arrive with no overlapping
muzzle blast. (The only exception is when we are shooting away
from the sensor and the source of both the shockwave and the muz-
zle blast becomes the gun itself.) We chose to record a 120ms long
period and tried to simplify the recognition algorithm to minimize
the processing time.

Note that signals are only analyzed in the time domain. Resource-
intensive methods based on correlation or more sophisticated tech-
niques [1, 4, 10, 14] would be not feasible on our constrained plat-
form because of time, memory and energy limits. Other shot detec-
tor systems used similar design decisions in the past [18].

8.1 Structure of the detector
Our gunshot detector has 3 stages. The first stage runs in real-time,
and its main functionality is to filter out false wake-up events. If the
microphone samples collected in the first 3ms after the wake-up
are all below a threshold value, the system stops recording and goes
back to deep sleep mode. Below this threshold value, the recorded
amplitudes are so small that no reliable detection is possible.

The second stage implements a cross-domain filtering and only
runs offline. The main functionality is to filter out acoustic events
caused by mechanical impacts on the box. Basically two types of
events are possible. The first type is produced by sound pressure
waves; the second is generated by mechanical impacts. The main
difference between the two is the sound pressure level (SPL) and
vibration energy ratio. The electret microphone converts only the
sound waves into voltage difference, while the contact microphone
reacts to the vibration of the metal wall. When somethings hits the
box, a branch of a tree, water, rocks, etc., it generates significant
vibrational energy compared to the energy that is generated by
the corresponding sound pressure waves. In summary, when a
mechanical impact happens, the contact microphone’s signal gets
clipped while the generated acoustic SPL remains low, resulting
in small amplitudes in the electret microphone signal. In contrast,
when an acoustic wave reaches the device, only a small portion of
the energy is converted to vibration resulting in small amplitudes
in the piezo microphone signal. However, the electret microphone
signal will be pronounced. It may even clip when a high SPL wave
reaches the sensor. Based on these observations, knocks can be
filtered out efficiently, which is important, because these types of
events have impulsive nature and occur frequently in the wild.

The third stage implements the most complex analysis. During
the recording phase, preprocessed signal buffers are created, and
a number of features are computed from them representing basic
relations between several well-defined points of the N-wave pattern.

8.2 Shockwave detection
Gunshot detection mainly relies on shockwave classification in
the system. During the recording phase, an online algorithm is
constantly searching for possible shockwave candidates. It is done
by finding consecutive jumps and zero-crosses in the signal and
only sections with proper lengths are inserted into a candidate list.
Later, only these candidate regions are analyzed, which reduces the
processing time.

Fig. 9 shows a possible shockwave candidate region which has a
proper length, mandating further analysis. The procedure starts by
finding key points in the pattern, namely the start, the maximum,
the middle, the minimum and the end points of a hypothetical
N-wave shape. These points are also illustrated in Fig. 9.
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Figure 9: Shockwave candidate with marked key points.

Based on the well-known shape and symmetry of the shockwave,
10 features are calculated. Let us denote the raw microphone signal
by s , a discrete-time signal with the ith sample accessed by s[i].
s0 denotes the same signal after bias level component removal.
sl in is the linearized version of s , the result of connecting the key
points with straight lines. t̂min denotes the estimated location of
the minimum point based only on the first half of the shockwave
pattern. Table 1 presents the 10 extracted features.

As it will be explained in Section 9, a set of shooting range
tests were carried out during the development of the algorithm.
We used these recordings and our experience to define functions
ϕi , i = 1, .., 10, which assign [0,1] real-valued numbers to the ex-
tracted features fi , i = 1, .., 10. The types and parameters of the ϕi
functions were partially determined by analyzing the distributions
of the fi features in the collected recording set. These functions are
similar to the membership functions in the field of Fuzzy theory.
However, we do not use rules and the Fuzzy operators, instead a
simple aggregation function, σ is defined. The σ function computes
the weighted sum of the feature vector F = [ϕi (fi )]i=1, ..,10 with a
weighting vectorW = [wi ]i=1, ..,10, wherewi is the importance of
the corresponding feature fi . The sum of thewi weights must be
equal to 1.0. In that case the σ function produces a score between
0.0 and 1.0, which reflects the "shockwaveness" of the analyzed
signal section. In the current implementation, weights were tuned
accordingly to emphasize the importance of the initial section of the
N-wave pattern as the end region might be affected by distortions.
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Table 1: Extracted features fi, i = 1, .., 10 from the shockwave
candidates. These features are based on the known shape
and symmetries of the N-wave pattern.

Maximum amplitude =max{|s0[tmax ]|, |s0[tmin |]}

SymmetryT = |(tend − tmiddle ) − (tmiddle − tstar t )|

Symmetry Enerдy =
∑tend
i=tstar t

s0[i]

Risinд time Star t = tmax − tstar t

Linearity {max,middle } =
∑tmiddle
i=tmax

|s[i] − sl in [i]|

Linearity {middle,min } =
∑tmin
i=tmiddle

|s[i] − sl in [i]|

Minimum point error = |tmin − t̂min |

Clippinд = # o f clipped points

Risinд time End = tend − tmin

Amplitude symmetry = |s0[tmax ] − s0[tmin ]|

8.3 Muzzle blast detection and filtering
In contrast to the unique-shaped shockwave pattern, the muzzle
blast does not possess any accurately distinguishable signal shape.
Different rifles generate different muzzle blast signatures, which
depend on many parameters of the barrel, the cartridge and the
acoustic environment. With suppressors, the loud, impulsive na-
ture of the sound can be distorted too. Therefore, our system does
not rely on the detection of these acoustic events, but may use the
information for additional confirmation. The implemented muzzle
blast detector analyzes the recorded signal in the time and energy
domain. The time domain analysis uses the impulsive nature and
loudness of the blast and filters out false patterns by their length.
The energy domain detection tries to examine the same, corre-
sponding features. In both domains, only inaccurate recognition is
possible, but if both of the methods mark the same section of the
signal as muzzle blast region, then the system interprets this as a
possible muzzle blast candidate, which may lead to a final decision
with higher confidence.

The structure of the entire recording is also analyzed by a fil-
tering component. For example, if the recording contains a high
SPL, but periodic, long lasting signal and a less perfect shockwave
pattern close to the end, it is probably a false detection. In contrast,
if a less reliable shockwave detection occurs at the very beginning
of the recording and a weak muzzle blast detection also occurs later,
and the whole signal contains only these two impulsive sections, it
is likely that a gunshot event happened. A set of similar intuitive
rules have been implemented to strengthen or weaken the detection
outcomes.

8.4 Final aggregation and examples
The three separate components in the third stage of the gunshot
detector (shockwave detection, muzzle blast detection and filtering)
all produce a [0,1] real-valued outcome. These values are combined
into one final output, which reflects the probability of a gunshot
event. The aggregation emphasizes the importance of the shock-
wave detection result. However, if the filtering method rejects the
recording based on the mentioned intuitive rules, the aggregation

is bypassed and the final output becomes 0.0 without the execution
of the additional detection algorithms.

The use of soft computing has a benefit of postponing critical
decisions to the later stages. In our case, it means that a confidence
level can be attached to the gunshot alert and the anti-poaching
team can take it into consideration as well as various other factors
before a response is initiated. Therefore, our approach is to set a
threshold only for alert sending and never make a strict decision
about events. The alert sending threshold is not finalized in the
current state of development yet; the fine tuning of this part of the
system will happen after the completion of the ongoing wildlife
tests in Africa (see Section 9).

In Fig. 10 a set of examples can be seen; the recording of a knock,
an animal sound and a gunshot. It also illustrates the basic struc-
ture and behavior of the detector, where the recordings propagate
through the stages. In all three cases, the upper signals correspond
to the contact microphone, the lower signals to the electret mi-
crophone. All of the recordings contain active acoustical events,
so Stage 1 lets them through. Stage 2 filters out mechanical im-
pact events, and as it can be observed, the vibrational energy is
overwhelming compared to the acoustical energy in the leftmost
recording. This ratio between the energies suggest that a physical
contact event happened and this recording does not reach the next
phase. The two acoustical events are processed by the final stage,
where probabilities are assigned to each recording. In the case of the
animal sound, the recording does not contain impulsive sections,
just periodic pattern, so the filtering method of this stage rejects this
signal and interrupts the execution of further detection algorithms.
The rightmost example is a true gunshot, therefore, shockwave and
muzzle blast detection happen and the filtering method confirms it
by analyzing the whole recording. The output vector is aggregated
from these three values and an alert message is sent with a high
confidence that a gunshot occurred.

Stage 1

Stage 2

Stage 3

[X, X , 0.0] [0.65, 0.12 , 0.07]

Alert: 0.84

Knock Nature noise Gunshot 

Figure 10: The structure and the behavior of the detec-
tor with three example recordings propagating through the
stages. In these recordings on the top, the upper signals cor-
respond to the contact microphone, the lower ones to the
electret microphone.
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Figure 11: Commercial GPS tracking unit extended with the
gunshot detection subsystem before being filled with resin.
The protective black box contains the acoustic sensor board
and the delay line. One of the batteries (purple cylinders)
is reserved for the gunshot detector and the remaining ones
for the tracking unit (located underneath). Additional super-
capacitors (grey cylinders) are included to help with the cur-
rent spikes of the GPS and the SD card.

9 EVALUATION
To help the development of the gunshot detection system, numer-
ous experiments were carried out. Typically, tests were performed
on the shooting range to assess and understand the nature of shock-
wave propagation in different structures. The choice of materials,
microphones, amplifications and the fine-tuning of the detection
algorithm are all based on these field experiments.

Animal-borne tests were performed too, where we could collect
real-world data, sounds, mechanical impacts, accelerometer data,
etc. During the first such experiment, the device was worn by a cow
for two weeks. Note that this unit did not have the GPS board and it
only contained a single battery and a much lighter counterweight.
The purpose of this test was to evaluate the mechanical durability of
the structure, to check the robustness of basic software components
and to collect real acoustic events through the delay line.

The second real-world experiment became possible with the help
of the San Diego Zoo and Safari Park. During this test, elephants
wore the device for two weeks. To reduce the load on any one
animal, each elephant carried the box for two days at a time. A
static node close to the elephant herd was also deployed. The two
nodes collected environmental sounds produced by the elephants,
neighboring animals and people. The boxes successfully survived
the proposed two weeks and collected 7500 events.

The third and most relevant experiment is currently ongoing
in Kenya, where a prototype sensor has been deployed on a wild
elephant and it is collecting wildlife sounds and accelerometer data
under real-world conditions. The internal assembly of the unit is
presented in Fig. 11.

To evaluate the detector algorithm with representative data, a
set of additional impulsive sound effects have been collected. These
events included animal and natural environmental noises such as
thunder and rain. The collection was played back in a sound studio
and the acoustical events were re-recorded by our device. The play-
back was carried out by a high-end speaker with a flat frequency
curve at high SPL levels. All of the produced events exceeded the
110 dB SPL level, which was verified by a measurement microphone.

These pressure levels are rare in the nature, but our wake-up mecha-
nism, which is fine-tuned for gunshots (above 120 dB SPL), requires
the presence of SPL levels above 90 dB to activate. These recordings
allow the analysis of the detection algorithm separately, since most
of them would be rejected by the earlier stages of the detector in
their real form.

From the various animal tests and experiments, a dataset has
been created. The dataset contains 1000 mechanical impact noises
(collected by knocking the box with different materials), 1683 na-
ture sounds from the sound studio experiment and 7500 events
from elephants and from their environment. 71 gunshots were also
recorded with the final structure of the device, which are indepen-
dent from the samples that were used during the development of
the gunshot detection algorithm.

9.1 Results
Each subgroup of the dataset was analyzed separately. As was ex-
plained in the previous section, the detector output represents the
probability of gunshot pattern containment in the particular record-
ing. The output values of the detection algorithm were collected
into histograms, where the vertical axes are presented on a loga-
rithmic scale, because the comparison of numbers with different
magnitudes are required. The results are summarized in Fig. 12.

In the third (green) row in Fig. 12, the histogram of the 1000
outputs of the mechanical impacts subgroup is presented. It can
be seen that only two inputs received small, but greater than zero
probabilities. Most of the recorded signals have an impulsive nature
and detection based only on the microphone signal would be chal-
lenging. However, our method uses the cross-domain filtering in
the second stage of the detector, which efficiently filters out these
types of events.

The results are similar in the case of nature sounds shown in
the second (blue) row in Fig. 12. These acoustic events are the
most challenging for the classification algorithm, since only the
pattern recognition part is responsible for false positive rejection.

Figure 12: Output histograms of each subgroup of the
dataset. A clear separation between the various sounds and
gunshots can be observed. Note that all acoustic events ana-
lyzed were recorded with the actual sensor.
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However, the shockwave and gunshot patterns are unique in nature,
which makes the recognition problem feasible with high accuracy.
Only two of the 1683 events resulted in (slightly) greater than zero
shockwave confidence levels.

The first (yellow) row in Fig. 12 illustrates the accuracy of the
detector, when the input data came from real elephant environment.
All of the 7500 events rejected correctly, as no gunshots happened
near the elephants. The result is promising, because this group
of the dataset contains samples that are probably the closest to
real-world wildlife sounds.

We have seen the detector’s false positive rejection performance,
but the main challenge is to remain sensitive to the lower quality
gunshots at the same time. The last (red) row in Fig. 12 presents the
result of the detection algorithm on gunshot recordings. As it can be
observed, all of the samples have probabilities that are suggesting
gunshot activity. On the shooting range during the tests, we varied
the distance between the sensor and the rifles (AK-47 and AR15),
and the orientation and distance of the box relative to the bullet
trajectory. We also covered the box with mud to simulate real-world
conditions. Because of these effects, the recorded shockwaves and
muzzle blasts vary in quality.

During the real application of the presented device, false alarms
will be expensive and immediately result in loss of trust. Therefore,
the alert-sending threshold must be chosen carefully. Since our first
wildlife test is currently ongoing, this functionality of the system
will be fine-tuned when the data become available. However, from
the analyzed dataset, the threshold value can be estimated. The
maximal confidence value was 0.22 for non-gunshots, while the
lowest gunshot scorewas 0.44. Therefore, a threshold value between
these two numbers would result in 0 false positive alerts, while all
of the gunshots would be reported.

9.2 Power consumption
The power measurements presented in Section 6 are based on a
laboratory circuit of the acoustic channel and the microcontroller.
The current operational prototype includes power regulators, the
accelerometer circuitry and an SD card to save all acoustic and
acceleration data to fine-tune the classification algorithms for the
next version. The power consumption of this prototype board in dif-
ferent states was also analyzed to estimate the expected lifetime. In
sleep mode, it consumes 250 µA, which exceeds the value presented
in Fig. 6 by 150 µA due to the additional components.

In active processing mode, the power consumption is 4.6mA,
which is dominated by the CPU running at a high frequency. Note
that the SD card was physically removed during the tests and the
corresponding data logging software functions were disabled. The
lengths of the active periods are dependent on the level of action re-
quired by the detector algorithm. If a false wake-up event happens,
Stage 1 immediately sends the device back to sleep mode, and the
active mode only lasts for 3ms . If the wake-up is caused by a me-
chanical impact or an acoustic event, the length of the signal buffer
used is 120ms . Stage 2 relies only on features calculated online,
thus its output is generated instantly and the required duration is
therefore 120ms . If a signal reaches Stage 3, the most complex part
of the detector is executed to analyze the possible shockwave and
muzzle blast candidates. As the signal buffer is short (8000 samples),

and all of the methods have time complexity of O(n), Stage 3 termi-
nates rapidly. The (over)estimated maximal total time of a gunshot
detection is 240ms .

To estimate the rate of wake-up events, we analyzed our San
Diego Zoo dataset. During the two weeks of deployment, the aver-
age rate was 20 events/hour including the false wake-up cases. If
we assume that all of these events reach Stage 3, and an additional
1000 false wake-up and 100 mechanical impact events happen every
hour, which is a safe overestimate, the average power consumption
becomes 273 µA. If we double these rates (40, 2000, 200), the current
draw only rises by 10% to 298 µA. In the current GPS tracking collar
setup, the battery dedicated to the gunshot detector subsystem has
a nominal capacity of 19Ah, which offers a lifespan of 8 years with
the estimated event rates. As the proposed lifetime of a tracking
collar is only 2 years, smaller batteries could be used, enabling the
use on a wide variety of animals.

10 CONCLUSIONS AND FUTUREWORK
An animal-borne gunshot detection system has been developed
to extend currently used GPS tracking collars for elephants. With
the fusion of the two systems, gunshot alerts can be raised in real-
time coupled with location data. The main challenges were the
multi-year lifetime requirement, the preservation of the sound and
shockwave quality and minimizing the false positive rate. With an
acoustic delay line structure that utilizes two microphones with
different characteristics, the power consumption has been dramat-
ically reduced and the detection accuracy improved significantly.
Real-world tests were carried out, including with elephants in a
safari park. The collected dataset contained various environmental
sounds, mechanical impacts and real gunshots. The evaluation of
the detection algorithm on this dataset showed promising results.

The first prototype sensor with on-board storage has been in-
tegrated into a GPS tracking collar, and is currently under real
wildlife testing in Africa. After several months, the collected data
from this test will be available and the fine-tuning of our gunshot
detection algorithm will be performed. The longer term goal of the
project is to release all hardware and software in open source form
so that gunshot detection capability can be freely integrated into
any tracking collars.
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